Skip to main content

Tag: Animal Hosts

  1. Molecular dialogue between intestinal stem cells and microbiota

    The intestinal epithelium faces unique challenges as it is constantly exposed to the passage of ingested material including food, bacteria and xenobiotics. To maintain tissue function, the intestinal epithelium is undergoing continuous renewal mediated by intestinal stem cells (ISCs). ISC proliferation and differentiation are constantly adapted both to the microbes present and to the gut […]

  2. Mechanisms of Virus-Host Interactions

    The main focus of our research program is to elucidate key mechanistic components in enveloped viruses and their target host cells that: 1] mediate viral entry into cells, 2] elicit cell immune responses, and 3] mediate viral egress from cells. Within our lab, these studies lead to the design, development, and testing of novel antiviral agents […]

  3. Development of broadly neutralizing antibodies to influenza

    Development of broadly neutralizing antibodies to influenza using a novel bacterial outer membrane vesicle platform: The Leifer and Putnam labs have an ongoing collaboration to use innovative engineering techniques develop, test, and understand the underlying immunological mechanisms of new vaccine adjuvant bacterial outer membrane vesicle platforms. We are interested in postdoctoral candidates proposing to take […]

  4. Ecology and Evolution in Bacteria-Host Interactions

    The Hendry lab uses experimental and -omics approaches to understand the impact of host interactions on bacterial ecology and evolution, as well as how microbes influence hosts. Research in the lab focuses on a variety of systems, particularly insect and plant associated bacteria. Our interdisciplinary group encompasses broad interests within microbiology, evolution, and ecology and […]

  5. Corrie Moreau lab

    The Moreau lab focuses on the symbiotic factors that drive speciation, adaptation, and evolutionary diversification.  Much of the research in the lab focuses on the potential co-evolution of ants and their gut-associated bacteria to understand the diversity and putative function of host-associated microbes.  By coupling this information with data on diet, trophic ecology, evolutionary history […]

  6. Tory Hendry lab

    The Hendry lab studies the evolution and ecology of bacteria interacting with animal hosts, particularly insects. Study systems include both pathogenic interactions of bacteria with agriculturally important insects and mutualistic interactions where bacterial symbionts influence insect ecology and evolution. There are several undergraduate research opportunities in the lab using techniques in microbiology, ecological experiments, and […]

  7. John Helmann lab

    The Helmann lab investigates adaptation to stress using Bacillus subtilis as a model organism. One project focuses on the roles of alternative sigma factors and other regulators in controlling cell envelope stress responses. These studies support our ongoing work on the molecular mechanisms of antibiotic resistance. A second major research effort is directed at metal ion homeostasis. Metal regulation plays […]

  8. Michelle Heck lab

    The Heck lab deciphers molecular mechanisms regulating insect transmission of plant pathogens and uses this knowledge to create practical solutions that mitigate vector-borne diseases in agriculture. We use a combination of computational and wet-lab approaches to study vector-pathogen-plant interactions. Students will receive training at the intersections of computational biology, plant pathology, entomology, microbiology, genetic engineering […]

  9. Esther Angert lab

    The Angert lab specializes in the interplay between specific microbial populations and their animal hosts. Current research is aimed at defining these relationships and understanding how they impact host nutritional ecology and evolution. The lab group is interested in developing a comprehensive understanding of the biology of an exceptional group of bacteria called Epulopiscium spp. that inhabit […]

  10. Gabrielle Le-Bury

    Macrophages are susceptible to HIV-1 infection and are resistant to virally-induced cell death. Alveolar macrophages (AM) in particular are known to be extremely long-lived and self-renewing, and have been shown to be both permissive to HIV-1 infection and persist in the face of Anti-Retroviral Therapy[...]