Skip to main content

Research Type: POSTDOCS

  1. Pamela Chang Lab

    The Chang lab conducts research at the interface of chemical biology, microbiology, and immunology. Our research is focused on understanding chemical communication between the gut microbiome and the host immune system.  Using both chemical and biological approaches, we develop novel chemical tools to understand 1) the metabolism of the gut microbiome and 2) important pathways […]

  2. Molecular dialogue between intestinal stem cells and microbiota

    The intestinal epithelium faces unique challenges as it is constantly exposed to the passage of ingested material including food, bacteria and xenobiotics. To maintain tissue function, the intestinal epithelium is undergoing continuous renewal mediated by intestinal stem cells (ISCs). ISC proliferation and differentiation are constantly adapted both to the microbes present and to the gut […]

  3. Mechanisms of Virus-Host Interactions

    The main focus of our research program is to elucidate key mechanistic components in enveloped viruses and their target host cells that: 1] mediate viral entry into cells, 2] elicit cell immune responses, and 3] mediate viral egress from cells. Within our lab, these studies lead to the design, development, and testing of novel antiviral agents […]

  4. Exploring host-microbe interactions related to metabolic disorders

    The Brito Lab is recruiting postdocs in direct host-microbiome interactions that may modulate health. We are specifically interested in exploring bacterial proteins that can alter host cellular functions. We are looking for individuals with either computational or wet lab experience, or both. Interested candidates will be able to explore the mechanistic underpinnings of microbiome-related disorders […]

  5. Development of broadly neutralizing antibodies to influenza

    Development of broadly neutralizing antibodies to influenza using a novel bacterial outer membrane vesicle platform: The Leifer and Putnam labs have an ongoing collaboration to use innovative engineering techniques develop, test, and understand the underlying immunological mechanisms of new vaccine adjuvant bacterial outer membrane vesicle platforms. We are interested in postdoctoral candidates proposing to take […]

  6. Ecology and Evolution in Bacteria-Host Interactions

    The Hendry lab uses experimental and -omics approaches to understand the impact of host interactions on bacterial ecology and evolution, as well as how microbes influence hosts. Research in the lab focuses on a variety of systems, particularly insect and plant associated bacteria. Our interdisciplinary group encompasses broad interests within microbiology, evolution, and ecology and […]

  7. The impact of interindividual variation in oral and gut microbiomes on host health

    The Poole Lab studies the causes and effects of human microbiome variation with the goal of manipulating microbes to improve human health. We want to know why individuals respond differently to the same dietary intervention in order to develop precision nutrition protocols for the prevention and treatment of metabolic disorders. Our resources include, but are not […]

  8. Fungal-bacterial interactions

    The Pawlowska Lab studies interactions between fungi and bacteria using several model systems. Potential projects involve: (1) dissecting the mechanisms of innate immunity in fungi, (2) evaluating the impact of bacteriome on phenotypic diversity of fungi, and (3) examining the role of common mycorrhizal networks in plant microbiome assembly.

  9. Mechanisms and Clinical Significance of β-Lactam Tolerance in Gram-negative Pathogens

    Antibiotic treatment failure is an increasingly widespread burden on human health that poses one of the most significant threats to planetary life. Treatment failure is often due to the development of antibiotic resistance. A complete comprehension of the factors that promote the development, and particularly the dissemination, of antibiotic resistance is still lacking. Nonetheless, evidence […]

  10. microscope work

    Opportunistic infections at the host-pathogen interface

    Opportunistic pathogens can subvert infection barriers (e.g., host immune functions and nutrient limitations) and switch from peaceful commensal to potentially lethal pathogen. The factors promoting either outcome are unknown, but must be shaped by dynamic physiological interactions between host and pathogen. This project aims to determine key factors at the host-pathogen interface that mediate the […]