Skip to main content

Tag: Agricultural Research

  1. Casteel: Nature Plants paper

    Associate Professor Clare Casteel (SIPS) has a paper out in Nature Plants, in collaboration with labs at UC Davis: “Organic management promotes natural pest control through altered plant resistance to insects” PAPER:  https://www.nature.com/articles/s41477-020-0656-9.epdf

  2. Evolution of Symbiosis

    The long-term goals served by this project are mechanistic understanding of plant disease and development of broadly effective and durable means of control. The project seeks to structurally and functionally characterize a pathogen-activated host gene that plays a critical role in disease in a major crop species, and to ascertain the potential of strategies to […]

  3. Exploring host-microbe interactions related to metabolic disorders

    The Brito Lab is recruiting postdocs in direct host-microbiome interactions that may modulate health. We are specifically interested in exploring bacterial proteins that can alter host cellular functions. We are looking for individuals with either computational or wet lab experience, or both. Interested candidates will be able to explore the mechanistic underpinnings of microbiome-related disorders […]

  4. Ecology and Evolution in Bacteria-Host Interactions

    The Hendry lab uses experimental and -omics approaches to understand the impact of host interactions on bacterial ecology and evolution, as well as how microbes influence hosts. Research in the lab focuses on a variety of systems, particularly insect and plant associated bacteria. Our interdisciplinary group encompasses broad interests within microbiology, evolution, and ecology and […]

  5. Fungal-bacterial interactions

    The Pawlowska Lab studies interactions between fungi and bacteria using several model systems. Potential projects involve: (1) dissecting the mechanisms of innate immunity in fungi, (2) evaluating the impact of bacteriome on phenotypic diversity of fungi, and (3) examining the role of common mycorrhizal networks in plant microbiome assembly.

  6. Andre Kessler lab

    The research in the Kessler Lab focuses on the ecology and evolution of plant chemical defenses (secondary metabolites) to pathogens and herbivores and the role of soil microbial communities to affect and be affected by plant secondary metabolism. Thus we try to understand how microbially-mediated plant-soil feedbacks influence the macroscopic interactions of plants with their […]

  7. Tory Hendry lab

    The Hendry lab studies the evolution and ecology of bacteria interacting with animal hosts, particularly insects. Study systems include both pathogenic interactions of bacteria with agriculturally important insects and mutualistic interactions where bacterial symbionts influence insect ecology and evolution. There are several undergraduate research opportunities in the lab using techniques in microbiology, ecological experiments, and […]

  8. John Helmann lab

    The Helmann lab investigates adaptation to stress using Bacillus subtilis as a model organism. One project focuses on the roles of alternative sigma factors and other regulators in controlling cell envelope stress responses. These studies support our ongoing work on the molecular mechanisms of antibiotic resistance. A second major research effort is directed at metal ion homeostasis. Metal regulation plays […]

  9. Michelle Heck lab

    The Heck lab deciphers molecular mechanisms regulating insect transmission of plant pathogens and uses this knowledge to create practical solutions that mitigate vector-borne diseases in agriculture. We use a combination of computational and wet-lab approaches to study vector-pathogen-plant interactions. Students will receive training at the intersections of computational biology, plant pathology, entomology, microbiology, genetic engineering […]

  10. Adam Bogdanove lab

    The Bogdanove lab’s research centers on the development of broad-spectrum, durable disease resistance in crop plants with a focus on diseases caused by bacteria that deploy host DNA binding proteins called TAL effectors. We also continue to be interested in the use of TAL effectors as customizable DNA targeting tools for applications such as targeted […]